

パルサーの 巨大電波パルスとSKA 三上 諒 (東京大学·宇宙線研究所)

パルサーと巨大電波パルス

<u> ◎パルサー(回転中性子星)</u>

│ • 超強磁場 (地表の約1兆倍) │ • 高速自転 (ミリ秒~数秒)

⇒宇宙の 「極限環境」

電波~γ線まで、幅広い周波数帯域で パルス放射が観測される

[http://www.jb.man.ac.uk/research/pulsar/double pulsarcd/media/lighthouse.avi]

パルサーと巨大電波パルス

<u> ◎パルサー(回転中性子星)</u>

│**•超強磁場** (地表の約1兆倍) │**•高速自転** (ミリ秒~数秒)

⇒宇宙の 「極限環境」

<mark>電波~</mark>γ線まで、幅広い周波数帯域で パルス放射が観測される

[http://www.jb.man.ac.uk/research/pulsar/double pulsarcd/media/lighthouse.avi]

巨大電波パルス(Giant Radio Pulse, GRP) に注目

パルサーの巨大電波パルス (Giant Radio Pulse, GRP)

2014/6/1 03:54:31UTC頃に3地点で同時観測されたカニパルサーGRP

- ・現在10個程度のパルサーでGRPが発見されている
- ・通常パルス強度の数千倍を超える
- ・≳100周期に一回発生
- ・ナノ秒スケールで激しい変動を見せる
- 放射機構は未解明

本研究の目的

GRPの多周波同時観測により到来時刻差を 精密測定し、パルス伝播路、特にパルサー近傍の プラズマ密度構造に迫る

星間プラズマ中の伝播による パルスの群遅延(dispersion delay)効果

角振動数ωのパルスがプラズマ中の距離Lを伝播するのに要す る時間Tは、

プラズマ中での屈折率

 $\omega >> \omega_{pe}$ として展開すると、

Dispersion Measure (DM)

$$T \simeq \int_{0}^{L} \frac{1}{c} \left[1 + \frac{1}{2} \frac{\omega_{pe}^{2}}{\omega^{2}} \right] ds = \frac{L}{c} + \frac{e^{2}}{2\pi m_{e}c} \frac{1}{f^{2}} \int_{0}^{L} n_{0} ds$$

これまでの研究では、DM項(∝f⁻²)のみが考慮され、より 高次の項は小さいとしてしばしば無視されてきた

f⁻²のdelayの効果のみで十分か? —Kuz'min et al. (2008)の報告—

 111, 63, 44MHz帯での カニパルサー GRP観測
 DMのみでは説明できないGRP の到来時刻差が見られた
 111MHz-63MHz間→~ 67 ms
 111MHz-44MHz間→~ 150 ms

Table 2. Results of observations at 111 and 63 MHz

Dates	N	DM_{JB} , pc/cm ³	Δt , ms	σ, ms
May 23-May 25, 2006	14	56.747	67	25
July 3–July 12, 2006	36	56.751	68	22
Oct. 3–Oct. 23, 2006	110	56.754	66	26
Nov. 5–Nov. 8, 2006	48	56.773	68	36
All runs	208	_	67	25

f⁻²のdelayの効果のみで十分か? —Kuz'min et al. (2008)の解釈—

- 低周波数のGRPが、DMにより与えられる遅延を補正しても さらに遅れている
- →dispersion delayの高次項が見えているかも?

$$T = \int_{0}^{L} \frac{ds}{V_{g}} = \int_{0}^{L} \frac{ds}{c\sqrt{1 - \frac{\omega_{pe}^{2}}{\omega^{2}}}} \simeq \frac{L}{c} + \frac{q^{2}}{2\pi m_{e}c^{2}} \frac{1}{f^{2}} DM + \frac{3}{8c} \left(\frac{q^{2}}{\pi m_{e}}\right)^{2} \frac{1}{f^{4}} EM$$

$$EM \equiv \int_0^L n_e^2 ds \quad \frac{\text{"Emission Measure"}}{1}$$

- →視線方向に、平均と比較して高密度のプラズマ領域が 一部だけ存在し、そこを伝播したと解釈
- (Kuz'minらの得たGRP到来時刻差 -> EM ~ 4×10⁶pc/cm⁶)

Kuz'min et al. (2008)で得られた
EM ~ 4×10⁶pc/cm⁶について
$$T = \int_{0}^{L} \frac{ds}{V_{g}} = \int_{0}^{L} \frac{ds}{c\sqrt{1-\frac{\omega_{pe}^{2}}{\omega^{2}}}} \simeq \frac{L}{c} + \frac{q^{2}}{2\pi m_{e}c^{2}} \frac{1}{f^{2}} DM + \frac{3}{8c} \left(\frac{q^{2}}{\pi m_{e}}\right)^{2} \frac{1}{f^{4}} EM$$

星間乱流による典型的なEM値*EM_{ISM}*は、 [1pcスケールの密度揺らぎを仮定]

$$EM_{ISM} = L\langle (\Delta n_e^2)_L \rangle = L \int d^3k P_{n_e}(\vec{k})$$

~L^{4π}/₃k³C_n²k^{-11/3} ~10⁻⁴ [pc/cm6] ≪4×10⁶pc/cm6 ⇒典型的な星間プラズマでは 観測値を説明困難 ⇒パルサー近傍のプラズマ構造?

Dispersion効果の詳細な検証

 $\Delta t \sim 4.15 \times 10^{-3} \mathrm{s} \left(f_{1,\mathrm{GHz}}^{-2} - f_{2,\mathrm{GHz}}^{-2} \right) DM_{\mathrm{pc/cm^3}} + 0.25 \times 10^{-12} \mathrm{s} \left(f_{1,\mathrm{GHz}}^{-4} - f_{2,\mathrm{GHz}}^{-4} \right) EM_{\mathrm{pc/cm^6}}$

EM項の調査により、パルサー近傍の プラズマ密度構造に迫れる可能性

<u>◎マイクロ秒~ナノ秒の構造を持つ</u> GRPは、到来時刻差の精密な調査に最適

<u>◎広帯域であるほど精密決定可能</u> <u>⇒SKAを用いた広帯域同時観測に期待</u>

*複数の副周波数帯から代表的な3つを選択して表示

*複数の副周波数帯から代表的な3つを選択して表示

*複数の副周波数帯から代表的な3つを選択して表示

SKAでどの程度のEMまで 検証可能か?

高周波数帯 (SKA-mid)のGRPを用いてまずDMを決定、

そのDMを用いて低周波数帯(SKA-low)のGRPとの到来時 刻差を比較し、EMを決定する。

DMが誤差δDMで決定したとすると、

$$EM_{\rm pc/cm^{6}} = \frac{\Delta t'}{0.25 \times 10^{-12} \left(f_{\rm min,GHz}^{-4} - f_{\rm max,GHz}^{-4} \right)} \\ \pm \frac{4.15 \times 10^{-3} \left(f_{\rm min,GHz}^{-2} - f_{\rm max,GHz}^{-2} \right) \delta DM_{\rm pc/cm^{3}}}{0.25 \times 10^{-12} \left(f_{\rm min,GHz}^{-4} - f_{\rm max,GHz}^{-4} \right)}$$

δDM=0.001 pc/cm³とし、f_{min}=0.05 GHz, f_{max}=0.30 GHzより、

 $EM_{\rm min,SKA} \simeq 4.04 \times 10^4 [\rm pc/cm^6]$

SKAでのEM項検出に 要求される時刻精度

 $\Delta t_{EM} = 0.25 \times 10^{-12} s \left(f_{1,GHz}^{-4} - f_{2,GHz}^{-4} \right) EM_{pc/cm^3}$

SKAの帯域で、EM = 4 × 10⁶ pc/cm⁶の場合に生じる遅延量 SKA1-mid band1 (0.35-1.05GHz) : 65µs

- SKA1-mid band2 (0.95-1.76GHz) : 1.1µs
- SKA1-mid band3 (1.65-3.05GHz) : 0.12μ s

(SKA1-low : 159ms)

高周波数帯での到来時刻差比較においては、≲100nsの 分解能での観測が必要 [cf. SKA1-midにおけるpulsar timing modeの時間分解能 : 100ns] (SKA1 System Baseline Designより)

SKAを用いた高密度プラズマ領域の検証

広帯域受信可能なSKAを ダイナミックスペクトルの例 使えば、ダイナミックスペ 周波数 [Burke-Spolaor & Bannister, 2014] クトル上で理論線をfitし、 EM項を直接検証できる可 能性がある (⇔ただし、パルス強度が 十分強いものに限られる) 時刻

Summary

- マイクロ秒~ナノ秒の構造を持つGRPの多周波同時 観測による到来時刻差の精密な調査
 ⇒パルサー近傍のプラズマ密度構造に迫れる可能性
 ⇒パルサーでの粒子生成・加速機構への手掛かり
- ・広帯域受信可能なSKAでは、先行研究より更に小ス ケール(密度、サイズ)の構造に迫れる可能性がある
- ・到来時刻差決定には≲100nsの時間分解能での観測
 が必要である