星形成・星間媒質研究の視点から Physics of ISM & Star Formation

Shu-ichiro Inutsuka (Nagoya Univ.)

18 - 19 Dec, 2013

@NAOJ, Mitaka, Tokyo, Japan

Outline

- Galactic Structure of Interstellar Medium
 - Phase Transition \rightarrow Turbulence
 - Formation of HI Clouds & Molecular Clouds

- Filaments & Star Formation
 - Star Formation Threshold, Star Formation Rate
 - IMF
- High Energy Astrophysics

Galactic Disk in Various Wavelengths

HI 21cm → ISM (T=10²-10⁴K)

 $CO(J=1-0) \rightarrow Molecular Molecular Clouds (T~10K)$

Sand Hard Small marine

NIR (DIRBE) → mainly K-Giants

X-Ray (ROSAT) \rightarrow Hot Gas (T=10⁶K)

Galactic Latitude Distribution: n(z)

Ferrière 2001, Rev.Mod.Phys. 73, 1031

銀河面からの高さ(z)方向の静水圧平衡

種々の重力場モデルに対する静水圧 平衡圧力分布の見積もり Boulares & Cox 1990, ApJ **365**, 544

Ferrière 2001, Rev.Mod.Phys. **73**, 1031 によるレビュー論文から

現状では、z方向の(準)静水圧平衡において、<u>ガス圧よりも、磁場圧や宇宙</u> 線に起因する圧力が効いていると結論されている。???

Radial Distribution of Various Energy

NGC6946

Magnetfelder in NGC6946 (VLA+Effelsberg 6cm)

Spiral Galaxy M51 ("Whirlpool Galaxy")

Spitzer Space Telescope • IRAC

NASA / JPL-Caltech / R. Kennicutt (Univ. of Arizona)

ssc2004-19a

M51 Synchrotron

M51 6cm Tot.Int.+B-Vectors (VLA+Effelsberg) M51 6cm Pol.Int.+B-Vectors (VLA+Effelsberg)

Copyright MPIR Bonn (A.Fletcher & R.Beck)

Copyright MPIR Bonn (A.Fletcher & R.Beck)

シンクロトロン偏波成分の詳細マップ

まだ,理論的説 明は無い!

PI at 1.4 GHz (26m DRAC+30m Villa E

偏光が無い部分がCanal 状の構造を作っている.

21cm DRAO+ Villa Elisa all-sky polarization survey (Wolleben et al. 2004)

Waiting for Planck Paper

- 相転移のダイナミックス
 - 超新星爆発, 電離領域膨張
 - 熱的不安定性→乱流
 - 長さ: Field Length, 時間: Cooling Timescale

Observed "Turbulence" in ISM

<u>Observation of Molecular Clouds</u>
 line-width δv > C_S
 Universal Supersonic Velocity Dispersion even in the clouds without star formation activity
 → should not be due to star formation activity

What is the Origin of "Supersonic Turbulence" in Molecular Clouds?

Dynamical Timescale of ISM

- **Dynamical Three Phase Medium**
 - e.g., McKee & Ostriker 1977
 - SN Explosion Rate in Galaxy... 1/(100yr)
 - Expansion Time...1Myr
 - Expansion Radius... 100pc $(10kpc)^2 \times 100pc$ $(10^{-2} yr^{-1}) \times (10^{6} yr) \times (100pc)^3 = 10^{10} pc^3 \sim V_{Gal.Disk}$
 - Dynamical Timescale of ISM ~ 1 Myr

≪ Timescale of Galactic Density Wave ~ 100Myr
 Expanding HII regions also important
 Energetics Argument → SNe

Radiative Equilibrium for a given density

Radiative Cooling & Heating

Koyama & SI (2000) ApJ **532**, 980, (adding CO to Wolfire et al. 1995)

2 Phase in Equilibrium

Shock Propagation into WNM

Koyama & Inutsuka (2002) ApJ 564, L97

WNM Swept-Up by 14.4km/s Shock (3D) Koyama & Inutsuka 2002 х

Y

Z

Summary of TI-Driven Turbulence

- 2D/3D Calculation of Propagation of Shock Wave into WNM via Thermal Instability
 - fragmentation of cold layer into cold clumps with long-sustained supersonic velocity dispersion (~ km/s)
 - "Field length" : $\lambda_{\rm F} \equiv \sqrt{\frac{\kappa T}{\rho^2 \Lambda}} \rightarrow 10^{-2} \, {\rm pc}$ 1D: Shock $\Rightarrow E_{\rm th} \Rightarrow E_{\rm rad}$ 2D&3D: Shock $\Rightarrow E_{\rm th} \Rightarrow E_{\rm rad} + E_{\rm kin}$ $\delta v \sim a \, {\rm few \, km/s} < C_{\rm S,WNM} = 10 \, {\rm km/s}$
 - **←**10⁴K due to Lyα line: Universality? Koyama & SI (2002) ApJ 564, L97

FAQ

衝撃波が無い場合は、乱流は減衰す るか?

Sustained "Turbulence" in Periodic Box

t = 0.000 Myr

Periodic Box Evolution <u>without Shock Driving</u> With Cooling/Heating and Thermal Conduction Without Physical Viscosity (*Prandtl* # = 0) Iwasaki & SI (2013)

磁気雲の形成過程

磁化したWNMを圧縮して分子雲はできるか?

Ref.

Inoue & SI (2008) ApJ **687**, 303 Inoue & SI (2009) ApJ **704**, 161 Inoue & SI (2012) ApJ **759**, 35

Colliding WNM with $B_0 = 3\mu G$

2-Fluid MHD Simulation (AD included)

Colliding WNM with $B_0 = 3\mu G$

2-Fluid MHD Simulation (AD included)

Colliding WNM with $B_0 = 3\mu G$

v=20km/s (a) 15deg (b) 40 deg

4-

S

100

10

Number Density

1000

Significant Fraction of Gas in Thermally Unstable State → Observable in HI (Heiles 2001)

10

Number Density

100

1

₽0.1

v=20 km/s $(e) < \delta B^2 >_{init} = B_0^2$ $(f) < \delta B^2 >_{init} = 4B_0^2$

1000

≓0.1

分子雲形成の現実的シナリオ 磁化したWNMを圧縮してもHI雲しかできない Inoue & SI (2008) ApJ 687, 303; Inoue & SI (2009) ApJ 704, 161 HI雲を圧縮する必要がある→ multiple episodes of compression. Converging Flow into 2-Phase Medium blue: $10^{2}/cc < n < 10^{3}/cc$ magenta: dense clumps $n > 10^{3}/cc$ Inoue & SI (2012) ApJ 759, 35 つまり、分子雲形成は時間が かかる!

Timescales for Phase Transition

- Warm Medium
- 10⁶yr
 HI Clouds
 10⁷yr?
 Molecular Clouds

10⁵⁻⁶yr?

New-Born Stars

c.f. $t_{MC} \sim 20 Myr$ in LMC (Fukui & Kawamura 2010)

HI Clouds vs Molecular Clouds f_{mol}: Molecular Fraction ©J. Koda $=\frac{\Sigma_{H_2}}{\Sigma_{H_2}+\Sigma_{HJ}}$ Large radial change fmol > 70-80% Little azimuthal change CO(1-0) M51 me 18:00.0 18-00.0 15:00.0 19:00.0 14:00:0 14:00.0 13:00.0 13:50.0 12:00.0 12.00.0 11:00:0 11:00.0 17-15-00.0 47-18-00.0 10kpc 10kpc 08:00.0 09-00-0 66.00.d 08.001 67:00.0 10.0 05.0 13:30:00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Koda et al. 2009

HI Clouds vs Molecular Clouds

M51 in PAWS Schinnerer+ (2013)

Summary

- Shock waves in ISM create turbulent CNM embedded in WNM.
- TI-driven Turbulence in Multi-Phase ISM
 - Evaporation/Condensation of CNM clouds
 - -Instabilities in Phase Transition Front
 - -Agree with Observed Kolmogorov Law
- <u>Multiple</u> Compressions of <u>Magnetized</u> 2-Phase Medium → <u>Molecular Clouds</u>

第2部

Filaments, Filaments, Filaments...

- Star Formation Threshold
- Star Formation Rate
- IMF

"The Milky Way in the Herschel Era" Sep 19-23, 2011@Rome, Italy

Herschel Satellite Telescope found ubiquitous filaments.

Aquila

Polaris

Ref. André et al. 2010

Character of Self-Gravity of Filaments

No <u>isothermal</u> pressure support against collapse $\rightarrow \gamma_{crit}=1$ for cylinder

←→ γ_{crit} =4/3 for sphere, γ_{crit} =0 for sheet

Critical Line-Mass for Filaments

(SI & Miyama 1992, 1997)

What is the resultant line-mass?

Fragmentation of Isothermal Sheet-Like Cloud

Linear Analysis ->

 $\lambda_{\text{fastest}} \approx 4\pi H = 4C_{\text{s}}^{2}/(G\Sigma)$ $\rightarrow M_{\text{L}} \approx \Sigma \lambda_{\text{fastest}} = 4C_{\text{s}}^{2}/G = 2 M_{\text{L,crit}}$ Nagai, SI, & Miyama 1998

"The Milky Way in the Herschel Era" Sep 19-23, 2011@Rome, Italy

Herschel Satellite Telescope found ubiquitous filaments.

Aquila

Polaris

Ref. André et al. 2010

From Ph. André's Slide @Another Conference Filaments have a characteristic width ~ 0.1 pc

Example of a filament radial profile 2.0×10^{22} 1.5×10^{22} 1.0×10^{22} 5.0×10^{21} 1.0×10^{22} 1.0×10^{21} 1.0×10^{21}

Radius [pc]

2

N_{H2} [cm⁻²]

-3

-2

-1

D. Arzoumanian et al. 2011, A&A, 529, L6

From Ph. André's Slide Confirmation of an extinction "threshold" for the formation of prestellar cores

Distribution of background column densities

Which is determinant, $N_{\rm H}$ or Filament-Width?

Herschel filaments have almost the same radii! Aquila: $2R=0.1pc \& M_L = 2C_s^2/G \Rightarrow N_H \approx 10^{22}cm^{-2}$ (A_v= several) Polaris: $2R=0.1pc \& M_L < 2C_s^2/G \Rightarrow N_H < 10^{22}cm^{-2}$ (A_v< several) "Column Density Threshold" is a consequence?

From Ph. André's Slide

Filament fragmentation produces the prestellar CMF and accounts for the « base » of the IMF

Jeans/Bonnor-Ebert mass:

 $M_{\rm BE} \sim 0.6 \ {\rm M_{\odot}} \times ({\rm T}/{\rm 10 \ K})^2 \times ({\Sigma}/{\rm 150 \ M_{\odot} pc^{-2}})^{-1}$

André et al. 2010, Könyves et al. 2010 A&A Vol. 518 ➤ The Jeans/Bonnor-Ebert mass at T ~ 10 K within marginally critical filaments with Σ = Σ_{th} ~ 150 M_☉pc⁻² is M_{BE} ~ 0.6 M_☉ → characteristic stellar system mass M_{*} = ε M_{core} ~ 0.2 M_☉ for a typical efficiency ε ~ 0.3

(cf. Larson 1985's interpretation of the peak of the IMF)

Ph. André - MW2011 Conference - 21/09/2011

Mass Function of Cores in a Filament SI 2001, ApJ 559, L149

Perturbation of Line-Mass of a Filamentary Cloud using **Press-Schechter Formalism** Power Spectrum $P(k) \propto k^{-n}$ Mass Function $\frac{dN}{dM} = -2 \frac{M_{\text{line}}}{M} \frac{df(M, \ \delta > \delta_c)}{dM}$ $= -\frac{M_{\text{line}}}{M} \frac{\delta_c}{\sqrt{\pi}} \exp\left(-\frac{\delta_c^2}{2\sigma_w^2}\right) \frac{1}{\sigma_w^3} \frac{d\sigma_M^2}{dM}$

Observation of Both Perturbation Spectrum and Mass Function

→direct test ! cf. Hennbelle & Chabrier Theory

 $P(k) \propto k^{-1.5}$

 $t/t_{ff} = 0$ (dotted), 2, 4, 6, 8, 10 (solid)

Observation shows $P(k) \sim k^{-1.6}$ (Andre+2013, PPVI)

What is missing?

 $M_{\rm filament} << M_{\rm envelope}$

Formation of Molecular Clouds

Converging Flow into 2-Phase Medium Inoue & SI (2012)

Hα View of Our Galaxy

Wisconsin H-alpha Mapper (WHAM) ; Haffner et al. (2003)

銀河内での中性水素原子の分布

0 ≤ VLSR ≤ +2 Km/s

中性水素ガス雲と分子雲

+2 km/sの成分

HIで直径15度 の穴が存在。 その周囲にCO ガスが分布す る。

+02.00km/s Galactic Latitude (degrees) **Taurus-Perseus HI Shell**

Morino et al. 2002 (NAO)

中性水素ガス雲と分子雲

+7 km/sの成分

等高線はCO の回転遷移 輝線のマップ

Morino et al. 2002 (NAO)

Nagoya 4m C¹⁸Oの回転遷移輝線のマップ Taurus C¹⁸O (Onishi et al. 1996)

Galactic Latitude (Degree)

Column Density Threshold?

Part 1: Protostellar Collapse Phase

Machida et al. (2006-2009), Banerjee & Pudritz (2006), Hennebelle & Fromang (2008)

Outflows & Jets are Natural By-Products!

Resistive MHD Calc. 分子雲コアから惑星へ

60 AU

SI, Machida, & Matsumoto (2010) ApJ 718, L58

Global Disk Simulation

Global Calculation by T. K. Suzuki (2010)

円盤風のz軸方向プロファイル

惑星形成の最終段階:Disk Dispersal

Disk Windではガスだけが消失する Suzuki, Muto & SI (2010) ApJ **718** 1289

HII Region in Molecular Cloud

• study the physical/chemical structure of the shell

• Does molecular gas accumulates in the shell shielding FUV photons?

If $M_* > 20M_o$, then number of massive stars increases exponetially.

→ Star Burst Hosokawa & SI (2006) ApJ 648, L131

第3部

• 高エネルギー天体物理との接点

- 超新星残骸
- 粒子加速

M51 Synchrotron

M51 6cm Tot.Int.+B-Vectors (VLA+Effelsberg) M51 6cm Pol.Int.+B-Vectors (VLA+Effelsberg)

Copyright MPIR Bonn (A.Fletcher & R.Beck)

Copyright MPIR Bonn (A.Fletcher & R.Beck)

Mystery: Energy Equipartition?

銀河系の中のエネルギー分布

- 銀河系内の(単位体積当り)星起源の輻射場のエネルギーは, $E_{\gamma,\text{stellar}} \sim 10^0 \text{ eV/cc}$

$$E_{\gamma, \underline{Z}} \sim E_{\text{th, gas}} \sim E_{\overline{11, \alpha}} \sim E_{\overline{11, \alpha}} \sim E_{\overline{11, \alpha}} \sim E_{\overline{11, \alpha}}$$

「~」の意味は±1桁程度の精度で...理由は不明?

Overall Equilibrium???

Spectrum of Various Components

Every component has energy density ~ 10° eV/cc .

Supernova Explosion in Multi-Phase ISM

Shock waves can create turbulence in <u>inhomogeneous pre-shock gas</u> even without <u>cooling!</u> Giacalone & Jokipii 2007

Supernova Shock in Multi-Phase ISM

 $\nabla \rho \times \nabla p \neq 0 \rightarrow \text{Vorticity Creation} (\delta v \sim c_s)$ Magnetic Field Amplification via Turbulent Dynamo $B_{\text{max}} \sim 1\text{mG} (\beta \sim 1 \text{ @post shock})$ Mach # > 10⁴ Inoue, Yamazaki, & SI (2009) ApJ 695, 825

B~mG important for CRs

Time = 1425 yr

Inoue, Yamazaki, & SI (2009) ApJ 695, 825; (2010) ApJ 723, L108 \Rightarrow X-ray Observations of Supernova@age~10³yr $B \sim 1\text{mG}$ (Bamba+2002, Uchiyama+ 2008, etc.)

Crab Nebula in Multi-Phase ISM

Richardson+2013

Summary

- Phase Transition Dynamics
 - Transition Layer Width = $\lambda_{\rm F}$
 - MC Formation Timescale ~ $10^7 yr?$
 - Observable as Spiral Structures
- Filaments & Star Formation
 - Star Formation Threshold
 - Various Environments... Observable
 - Planet Formation
- High Energy Astrophysics
 - SN Explosion in Multi-Phase ISM
 - CR acceleration Observable