Studying 21cm power spectrum with 1-point statistics

Based on Shimabukuro et al astro-ph/1412.3332

島袋隼士(名古屋大学&熊本大学)

アウトライン

- ・イントロダクション
- ・21cm power spectrumの時間発展
- ・スピン温度と輝度温度の1点統計
- ・まとめ

イントロダクション

○z >30・・**Dark age** 初期天体形成が起きていない時代。

15<z<30・・Cosmic dawn 初期天体が形成され始め、天体物 理学的な効果が効き始める。

○7<z<15・・Epoch of Reionization(EoR) 星や銀河からのUVによって、水素 が電離する。

O21cm line radiation

Thermal history

Power spectrum

21cm power spectrumの 時間発展

Method

今回は、輝度温度のmapを作成するのに21cmFAST(Mesinger et al 2010)を使用。(200Mpc^3, 300^3 grid)

準解析的方法

○密度揺らぎの計算はZel'dovich近似で解く。(N体は解かない。)

+

○イオン化率の時間発展や、加熱のプロセスは解析的なモデルを使用。(Furlanetto & Loeb, 2004)

○パラメータとして動かせるのは、イオン化効率や、星から出るUV光子の量やX線 光子の量など。

Decomposed 21cm power spectrum

 $\delta T_b(\nu) = \frac{T_{\rm S} - T_{\gamma}}{1 + z} (1 - e^{-\tau_{\nu_0}})$ $\sim 27 r_{\rm H} \left(1 + \delta_m \right) \left(\frac{H}{dv_r/dr + H}\right) \left(1 - \frac{T_{\gamma}}{T_{\rm S}}\right) \left(\frac{1+z}{10} \frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) [\rm mK].$ くちん 揺らぐ 各揺らぎからの寄与を見る。 brightness temperatureを(平均値)+(揺らぎ)に展開 $\eta = 1 - T_{\gamma}/T_{\rm S}$ $\delta T_b = (\delta T_b)(1 + \delta_m)(1 + \delta_{x_{\mu}})(1 + \delta_n)$ 各々のpower spectrumを計算 $\langle \delta_m(\mathbf{k})\delta_m(\mathbf{k}')\rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}')P_m(\mathbf{k}).$ $\langle \delta_{\mathrm{H}}(\mathbf{k}) \delta_{\mathrm{H}}(\mathbf{k}') \rangle = (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}') P_{x_{\mathrm{H}}}(\mathbf{k}).$ $\langle \delta_{n}(\mathbf{k})\delta_{n}(\mathbf{k}')\rangle = (2\pi)^{3}\delta(\mathbf{k}+\mathbf{k}')P_{\eta}(\mathbf{k}).$

Decomposed 21cm power spectrum

スピン温度と輝度温度の 1 点統計

Variance and skewness

Ovariance and skewness

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} \left[X - \overline{X} \right]^2$$
$$\gamma = \frac{1}{N\sigma^3} \sum_{i=1}^{N} \left[X - \overline{X} \right]^3$$

tailが左側→**マイナス** tailが右側→**プラス** ○variance→分布の幅を反映 ○skewness→WF効果、X-ray heating、どっちが効果的かで符 号が変わる。

Variance and skewness of brightness temperature

実際の観測量は輝度温度

variance $\sigma_{\delta T} = (\overline{\delta T})^2 \left[\sigma_{\delta_m} + \sigma_{\delta_\eta} + \sigma_{\delta_{x_H}} + \langle \delta_m \delta_\eta \rangle + \langle \delta_m \delta_{x_H} \rangle + \langle \delta_\eta \delta_{x_H} \rangle + O(\delta^3) \right].$

skewness $\gamma_{\delta T} = (\overline{\delta T})^3 \left[\gamma_{\delta_m} + \gamma_{\delta_\eta} + \gamma_{\delta_{x_H}} + \langle \delta_m \delta_\eta \delta_{x_H} \rangle \right]$

$$+ 3(\langle \delta_m^2 \delta_\eta \rangle + \langle \delta_m^2 \delta_{\mathbf{x}_{\mathrm{H}}} \rangle + \langle \delta_\eta^2 \delta_{\mathbf{x}_{\mathrm{H}}} \rangle + \langle \delta_m \delta_\eta^2 \rangle + \langle \delta_m \delta_{\mathbf{x}_{\mathrm{H}}}^2 \rangle + \langle \delta_\eta \delta_{\mathbf{x}_{\mathrm{H}}}^2 \rangle) + O(\delta^4) \Big]$$

variance&skewnessの成分のauto-correlation termをプロット。

Result

Skewness

 \bigcirc skewnessの符号変化の位置が η と δ Tで異なる。

→matterの揺らぎによる。

しかし、基本的な物理的シナリオは同じ。

○matterのskewnessは宇宙論的に計算できる。

○skewnessでは中性水素率の寄与がvarianceと比べて大きい。

〇スケール依存性を見るためには、bispectrumを見る必要あり。

メルボルン大学にて

○MWAグループが実際に使っているパイプライン(RTS)を用いて、 データ解析の勉強。

Summary

- ・21cm線シグナルから天体物理学的、宇宙論的情報を引き出したい。
- ・21cm power spectrumの物理的解釈が重要。
- 21cm power spectrumを各componentに分解し、EoR以前では、
 スピン温度の寄与が大きい事を確認。
- · power spectrumの振る舞いを理解するために1点統計を用いた。
- skewnessはWF効果やX-ray heatingで符号を変えるので、indicator として使える→X-ray sourceの性質(X-ray binary, quasar, supernovae remnantなど)を区別できる可能性。
- skewnessのスケール依存性を見るためには、bispectrumの解析が
 必要。(現在、進行中)

backup

水素の割合に制限。

<u>~</u>

high-z quasar → quasarのスペクトラムの吸収線から中性

$$\tau_{\rm GP}(z) = 4.9 \times 10^5 \left(\frac{\Omega_m h^2}{0.13}\right)^{-1/2} \left(\frac{\Omega_b h^2}{0.02}\right) \left(\frac{1+z}{7}\right)^{3/2} \left(\frac{n_{\rm HI}}{n_{\rm H}}\right)$$

7000	7500	8000	8500	9000	9500
J1148+5	251 z=6.42				
J1030+0	524 z=6.28	_م م م	• • • • • • • • •		
			*****	<u> </u>	
J1623+3	112 z=6.22			m	
J1048+4	637 z=6.20				man
J1250+3	130 z=6.13			····	
			, internet of the second s		and and i
J1602+4	228 z=6.07			~~~~~	
J1630+4	012 z=6.05		~~	herm	-
J1137+3	549 z=6.01		1 mm		19 M 1 1 2 24
10818+1	722 7=6.00	منصلعهم			
i i i i i i i i i i i i i i i i i i i	122 2-0.00	-	man man		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
J1306+0	356 z=5.99		m		
J1335+3	533 z=5.95		mon	-	
J1411+1	217 z=5.93	and the second secon		····	
J0840+5	624 z=5.85	44.4	mound	Alanta	-
J0005-0	006 z=5.85		A	0	20041110032
J1436+5	007 z=5.83		Amount	- 14	Aller see
J0836+0	054 z=5.82		A man	. FURDA	CANCELLA DE
10000010			(<u></u>	····	
30002+2	550 z≡5.80		/~~~~		
J0927+2	001 z=5.79		mapping	+	-
J1044-0	125 z=5.74			·····	
	2500	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	W	\$000	9920
			λ (Å)		

λ (Å)

(Fan et al 2006)

- ・ high-z galaxy → Ly-alpha luminosity functionの時間発展 から減光具合を調べる事により、中性水素の割合に制限。
- CMB偏光観測 → トムソン散乱に対する光学的厚さを見積も る事により、電子の柱密度を測定し、再電離の開始時期に制 限。

$$\tau_e \propto \int_{z_r}^0 n_e(z) \frac{dt}{dz} dz$$

 $\tau = 0.089 \pm 0.014$, z_{r}=10.6±1.

・EoR開始時期や、その期間の情報を知るためには、中性水素からの21cm線の観測が有効。

SKAによる観測計画が現在進んでいる。(2020年~ SKA 1始動
 予定. 集光面積: ~km^{2}, 視野: 5°×5°, 分解能: 1分角)

SKA1(SKAの10%程度のスペック)では、まずは、21cm線の
 揺らぎの統計的性質を探る。→Power spectrum

$$\langle \delta(\mathbf{k})\delta^{*}(\mathbf{k}')\rangle = (2\pi)^{3}\delta(\mathbf{k}+\mathbf{k}')P(k)$$

MWA観測データ (Dillon et al 2013)

MWAでの21cm power spectrumへの制限。

横軸:波数

あと2桁。温度にした ら、あと1桁の感度が 求められる。

Power spectrum

Mesinger et al 2013

k=0.1Mpc^{-1}

EoR historyごとのpower spectrumとsensitivity

Path finder(MWA, LOFAR)で は、EoR historyのモデルによ っては、21cm power spectrumは観測可能。

SKAではpower spectrumの観 測によりモデルの区別が可能 (z<20)

Decomposed 21cm power spectrum

EoR以前では、ηによる揺らぎが effective。ηに注目する。 →WF effect, X-ray heating

EoR以前のPSの物理的解釈を行うた めに*n*に注目する。

motivation

- Astrophysicsのパラメータ制限を行うためには、色々なパラ メータでの21cm signalの計算を行う必要がある。
- また、計算を素早く行う必要があるため、semi analyticコー
 ドで計算が早い21cmFAST(Mesinger 2010)を用いる。
- 今回は、brightness temperatureのmapを作成するのに
 21cmFASTを使用。(200Mpc^3,300^3 grid)
- ただし、feedbackなどを無視しているので、改良の余地あり。

Various X-ray models

太陽質量あたりのX-ray photonの数を変化させる。

 $(zeta_{X}=10^{57},10^{56},10^{55}/M_{sun})$

varianceやskewnessのピークの位置がシフト→モデルの区別