VLBI in the SKA era

Lecture on very long baseline interferometry

Hiroshi Imai

Amanogawa Galaxy Astronomy Research Center, Graduate School of Science and Engineering / Center for Education, Institute for Comprehensive Education, Kagoshima University

JST Sakura Program for international collaboration in radio astronomy between Japan and South Africa

Lecture contents

♦ Why VLBI?

- VLBI specifications
- VLBI requirements and constraints
 - Hardware
 - Software
 - Operation

Uniqueness of VLBI

- Science cases
- International collaborations in science and VLBI operation

Challenges of VLBI in the SKA era

- Global VLBI alliance
- Ultimate accuracy / massive astrometry
- Time domain astronomy in VLBI

JST Sakura Program for radio astronomy collaboration

Hiroshi Imai, Kagoshima University

Why VLBI? – ultimate angular resolution

Angular resolution ~ shortest fringe spacing

- Extreme case 1: RadioAstron (2013—2019)
 - SpectrR (spacecraft) ground telescopes
 - $\theta_{\text{beam}} \sim 7 \mu \text{as}$ (almost one baseline) @22 GHz
- Extreme case 2: Event Horizon Telescope (EHT)
 - Up to 7 long-baseline sites
 - $\theta_{\text{beam}} \sim 20 \ \mu \text{as} @345 \text{ GHz} information}$

Instead of sensitivity and image quality

- Limited number of long baselines
 - Limited common sky on the Earth
 - Limited coherence (integration) time
- Limited observation time slots
 - Limited available time of large telescopes
 - Limited observation cadence

Special equipment for VLBI

Purpose: getting *fringe visibilities*

- Detecting weak signals (with radio telescopes in general)
- Heterodyne receiving for wave correlation
 - Recording *digitized* time-series wave patterns <u>at a high speed</u>
 - Frequency conversion for more convenient recording
- Measuring visibility amplitudes and phases in correlator
 - Antenna gains and system noise temperature
 - Phase information \rightarrow complex correlation (90° phase shift)
 - Getting correlation \rightarrow delay tracking and fringe stopping

* Keep the necessary information stably

- High stability in frequency and time reference
 - High stability frequency standard
 - Loop-back circuits
 - Time stamp: 1PPS (pulse per second) signals

Record/get a priori information

- Antenna gains and system noise temperatures
- Weather, time system, ITRF, etc.

VLBI system: VERA (VLBI Exploration of Radio Astrometry) 6

JST Sakura Program for radio astronomy collaboration

Hiroshi Imai, Kagoshima University

JST Sakura Program for radio astronomy collaboration

Hiroshi Imai, Kagoshima University

Frequency conversion in each station

$$\begin{split} \left[V_{\rm RF}(t) + V_{\rm LO}(t - \tau_{\rm LO}) \right]^2 &= V_{\rm RF}^2(t) + V_{\rm LO}^2(t - \tau_{\rm LO}) + 2V_{\rm RF}(t)V_{\rm LO}(t - \tau_{\rm LO}) \\ &= V_{\rm RF}(t)V_{\rm LO}(t - \tau_{\rm LO}) = A_{\rm RF}\cos\left\{\omega_{\rm RF}t\right\}A_{\rm LO}\cos\left\{\omega_{\rm LO}(t - \tau_{\rm LO})\right\} \\ &= \frac{A_{\rm RF}A_{\rm LO}}{2} \left[\cos\left\{\omega_{\rm RF}t + \omega_{\rm LO}(t - \tau_{\rm LO})\right\} + \cos\left\{\omega_{\rm RF}t - \omega_{\rm LO}(t - \tau_{\rm LO})\right\}\right] \\ &= A\cos\left\{(\omega_{\rm RF} + \omega_{\rm LO})t - \omega_{LO}\tau_{\rm LO}\right\} + A\cos\left\{(\omega_{\rm RF} - \omega_{\rm LO})t + \omega_{LO}\tau_{\rm LO}\right\} \\ &= Filtered out \qquad \text{where } A = A_{\rm RF}A_{\rm LO} \quad \text{USB and/or LSB} \end{split}$$

8

USB (upper side band) and LSB (lower side band) USB: V_{IF} = V_{RF} - $V_{LO} \rightarrow V_{RF}$ = V_{LO} + V_{IF} LSB: V_{IF} = -(V_{RF} - V_{LO}) $\rightarrow V_{RF}$ = V_{LO} - V_{IF}

VLBI requirements and constraints

Hardware requirements / constraints

Frequency / clock stability

- $\sigma_{\tau} \ll 10^{-12}$ s in τ_{int} or $\sigma_{v} / v \ll 10^{-12}$ for $v \approx 10$ GHz and $\tau_{int} \approx 100$ s
- H-maser frequency standard ($\sigma_v / v \approx 10^{-15}$) is necessary.
- Optical lattice clock ($\sigma_v / v \approx 10^{-18}$) is newly applicable to VLBI.
- High speed digital sampling

VLBI requirements and constraints

Software requirements / constraints

- Correlator
 - High data damp rate
 - Higher dispersion spectroscopy
 - Wider field of view
 - Polarization handling and polarimetry (Stokes I,Q,U,V)
- Pipeline data processing
 - Loading raw data
 - Data flagging
 - Selecting reference data
 - Fringe amplitude calib.
 - Fringe phase calib.
 - Image synthesis
 - Source finding

$$\begin{split} 1 &\leq \Delta \phi_{\rm FoV} \left(v \right) \approx 2\pi v \Delta \tau_g \approx 2\pi v \frac{\partial \Delta \tau_g}{\partial t} T_{\rm int} \\ & \frac{\partial \Delta \tau_g}{\partial t} \approx \frac{D \omega_{\rm e} \Delta \theta_{\rm FoV}}{c}, \ \Delta \theta_{\rm FoV} \leq \frac{c}{2\pi v D \omega_{\rm e} T_{\rm int}} \\ & \text{and} \\ 1 &\leq \Delta \phi_{\rm FoV} \left(v' \right) \leq 2\pi \Delta v \Delta \tau_g \quad \text{where } v' = v + \Delta v \\ & \Delta \tau_g \approx \frac{D \Delta \theta_{\rm FoV}}{c}, \ \Delta \theta_{\rm FoV} \leq \frac{c}{2\pi \Delta v D} \end{split}$$

VLBI requirements and constraints

VLBI operation requirements / constraints

- Scheduling VLBI stations
 - Middle-size telescopes dedicated for VLBI monitoring

(e.g., VERA, KVN, VLBA)

- Advanced skills requested to users for operation
 - Selecting clock parameter (delay, delay rate offsets) calibrators large angular offsets from target
 - Selecting fringe calibrators short angular offset from target
 - Selecting flux / polarization calibrators very rare

VLBI calibrators are not ideal ones (bright, compact, stable).

- Data shipping
 - Physically shipping recorded medias via air cargo
 - Custom, security issue
 - Slow internet transportation

Uniqueness of VLBI – Science Cases—

Imaging in ultimate angular resolution

- Shadows of super-massive blackholes
- Lunching points of AGN (active galactic nucleus) jets M87*, Sgr A*

High precision astrometry

- Trigonometry (up to 10 kpc) of non-thermal sources

(including maser sources)

- Secular motions of radio sources
- See also Nakagawa's lecture

Mapping compact structures in

- interstellar / circumstellar / circumnuclear medium
- Astrophysical maser sources (in movies)
- Compact objects in deep universe (and solar neighborhood)
- VLBI for time domain astronomy (localization)
 - Fast transients: fast radio bursts (FRBs)
 - Slow transients: super novae, novae, rádio burst, maser bursts

EHT Collaboration 2022 EHT Collaboration 2019 Cr

Credit: EHT

↔ Millimeter (~1.3 mm) VLBI $\rightarrow \theta_{\text{beam}}$ ~20 µas

Ultra-high sensitivity

- Large apertures: ALMA-VLBI, LMT (Large Millimeter Telescope)
- Ultra-high speed signal recording: 32 Gbps

New imaging technique

- Sparse modelling
- Variability (4—30 min) modeling

JST Sakura Program for radio astronomy collaboration

Lunching point of an AGN jet

Ζ

Hiroshi Imai, Kagoshima University

Year

JST Sakura Program for radio astronomy collaboration

Movies of astrophysical masers

2001.21 20 AU mas

SiO masers in Orion Source I (Mattheus et al. 2009)

JST Sakura Program for radio astronomy collaboration

(Gonidakis et al. 2013)

Absolute motions

Relative motions w.r.t the star

18

H₂O masers around BX Cam (Xu et al. 2022)

JST Sakura Program for radio astronomy collaboration

JST Sakura Program for radio astronomy collaboration

Hiroshi Imai, Kagoshima University

International collaborations in science and VLBI operation

- Limited opportunities of VLBI observations in the world against other astronomical observations for
 - a variety of key compact targets that should be monitored

(>> a few hours, over decades)

- a large fraction of VLBI sources that request high sensitivity and image quality
- Limited budget and human resources in individual countries, including Japan, may cause
 - long delays (>> 1 month) of data deliver since VLBI observations through data correlation
 - long time (>> 1 year) for paper publications if working alone
- VLBI is one of the clearest style of international collaborations and friendship built from exchanging scientific ideas to scientific publications through array construction and operation.

Challenges of VLBI in the SKA era

Toward the Global VLBI alliance

Toward ultimate accuracy / massive astrometry

Time domain astronomy in VLBI

Toward the Global VLBI Alliance

23

JST Sakura Program for radio astronomy collaboration

SKA-JP Square Kilometre Array Japanese Consortium

Hiroshi Imai, Kagoshima University

advanced ionospheric/ tropospheric calibration technique dynamic range referencing frequency (switching) referencing

2024年1月25日

日本SKA協会ウェビナーシリーズ

Ultimate accuracy / massive astrometry

\Rightarrow Ultimate accuracy (σ ~1 µas) astrometry

- Feasible at high frequency bands (>5 GHz)
- Trigonometry of Large/Small Magellanic Clouds

(50 kpc/60 kpc)

- ~1 pc-accuracy level pulsar (<1 kpc) astrometry for improving detectability of gravitational waves from super-massive blackhole binaries (*P*≥1 year)
- Detections of astrometric microlensing events

* Massive (>> 1000 targets) astrometry (σ ~10 µas)

- Feasible at low frequency bands (< 2 GHz)
- 3D kinematics of individual nearby star-forming regions probed by young stellar objects (YSOs, non-thermal sources)
- 3D kinematics of the Galactic Nuclear Disk and Bulge probed by long-period variable stars (OH masers)
- 3D kinematics of Large/Small Magellanic Clouds (OH masers)

Time domain astronomy in VLBI

- Technology of automated processing for transient buffer data
 - Largest beam with single dishes
 - Synthesizing multiple
 <u>interferometer beams in</u>
 <u>realtime</u> (see right)
 - Syntesizing multiple
 <u>VLBI beams in offline</u>
 - Channelization should also be taken into account.
- VLBI scheduling for transients
 - Alerts of VLBI transients
 - Rules for transient VLBI

Figure 1. SKA-VLBI Capability for the SKA1 Observatory

JIV-ERIC & SKA Organisation 2020

Maser Monitoring Organisation (M2O)

28

1000 AT

10.090

LSR Velocity [km/s]

A Keplerian disk with a four-arm spiral birthing an episodically accreting high-mass protostar Burns et al. (2023)

https://www.masermonitoring.com

Synergy for single-dish monitoring of methanol masers and multi-wavelength observations

Follow-ups by VLBI observations in target-ofopportunity (ToO) triggers

JST Sakura Program for radio astronomy collaboration

Summary and future perspectives

***** Variety of efforts in VLBI toward the SKA era

- Variety of science goals yielded with even a single VLBI array
 e.g., VERA dedicated for astrometry
- Variety of stages of international collaborations built from designing a VLBI array to scientific project through construction and operation of the VLBI array
- One of the best suitable models of peaceful international cooperation

Challenges of VLBI toward the SKA era

- Complexity of VLBI array operation
- Technical challenges in ultimate accuracy and massive astrometry
- Sustainable development of VLBI arrays and their science cases
- Sustainable human interactions in young generation