

<u>パルサー</u>

パルサー

- ・周期的なパルス
- ・電波~ガンマ線
- ・周期:1ms~10s
- ・とても安定な周期
- ·2,800個程气発見
- ・高速回転する中性子星
- ミリ秒パルサー
- ・周期 < 30 ms
- ・250個程度発見
 ・このうち数十個は特に
 周期が安定
 → PTA、相対論テスト

Pulses from a pulsar(PSR B0301+19) (in Lorimer and Kramer, "Handbook of Pulsar Astronomy",2005) **Radio Intensity**

<u>SKAによるパルサー観測</u>

観測戦略

- ・低周波の方が明るいが、遅延や散乱が大きい
 →銀河面は高周波、面外は低周波
- ・全天サーベイ
- ・ターゲット観測(銀河中心、球状星団、系外銀河)

<u>SKAによるパルサー観測</u>

- これだけたくさんあると
- ・統計
 - 光度関数
 - 質量関数
 - 銀河系地図

- ・珍しいパルサー
 - サブミリ秒パルサー
 - 最大質量、最小質量

- 極限的連星

GCs could create some very strange creatures

SKAパルサーサイエンス

- ・パルサー国勢調査
- ・基礎物理の探求
 - 強重力での相対論検証
 - 重力波直接検出

SKA highlights

- 核物質の状態方程式
- ・パルサー磁気圏
- ・パルサー風
- ・中性子星の誕生、進化
- ・銀河系の構造(ガス・磁場)
- ・銀河間ガス

カ波アンテナ

ンフレーション宇宙を検証するCMB偏光観測小型科学衛星

LiteBIRD

Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

Square Kilometre Array Japanese Consortium

超大質量ブラックホール連星

Event Horizon Telescope

宇宙ひも

Hiramatsu, KT+ 2013

感度予想

背景重力波

- ・すでに感度は予測値の 上限に近く、検出の 兆候も見られる
- ・SKA以前に検出される 可能性はある
- ・SKA1なら検出は確実。 さらにスペクトル測定 も可能に。
- 単一重力波源検出
 - ・現状は上限のみ
 - ・SKA1なら可能に

M. Kramerスライド

<u>検出だけで満足か?</u>

一方、

- ・単一重力波源の位置決定
- ・背景重力波の非等方性検出
- ・重力波波形の測定 はSKAがあっても現状の方法論 では難しい。

PPTAにおける単一重力 波源の位置決定シミュレ ーション (Zhu+ 2014) 決定精度は O(10)~O(1000)平方度

<u>SKA-Japanパルサーチーム</u>

- ・メンバー:20名
- ・月1回のzoom会議
- ・研究会開催
- ・パルサー理論、パルサー観測、 重力理論、宇宙論などの混成チーム
- Parkes、InPTA、MWA、
 NANOGravなどとの共同研究

JSPSパンフレットより

オーストラリア(OP)との共同研究(熊本大学、高橋慶太郎准教授)

<u>サイエンスブック</u>

第5章	パルサ	·	162
5.1	パルサー研究の現状と未解決問題		162
	5.1.1	パルサーの多様性	162
	5.1.2	パルサー磁気圏	164
	5.1.3	パルサーによる重力波検出	165
	5.1.4	パルサーによる一般相対論検証	167
	5.1.5	パルサーを用いた銀河の磁場構造の研究	169
5.2	国際 SKA のサイエンス		171
	5.2.1	SKA を用いたパルサー探査	171
	5.2.2	天の川銀河中心のパルサー	172
	5.2.3	SKA による重力波天文学	173
	5.2.4	Tests of Gravity with Pulsars (パルサーによる重力理論の検証)	175
	5.2.5	パルサー磁気圏	177
	5.2.6	Structure and the Magnetoionic Interstellar Medium	179
5.3	日本の	サイエンス	180
	5.3.1	パルサーサーチの新手法	180
	5.3.2	パルサータイミングアレイによる重力波検出	181
	5.3.3	パルサースピンダウン率統計による超低周波重力波検出	184
	5.3.4	パルサータイミングアレイによるアクシオン探査	185
	5.3.5	パルサーによる重力理論の検証	187
	5.3.6	パルサー磁気圏	188
	5.3.7	グリッチの観測的研究	189
	5.3.8	モンテカルロシミュレーションによる銀河系磁場構造の決定	189
参考	文献.		192
著者	一覧.		195

<u>日本の研究1</u>

- ・X線との同時観測 (Enoto, Terasawa, Kisaka, Shibata+, 2021)
- ・国内パルサー観測体制の構築(亀谷・寺澤・今井・新沼)
- ・MWA100MHz帯でのパルサー探査(久野)

VERA水沢局、石垣島局のL帯 受信装置(亀谷さん提供)

<u>日本の研究:パルサータイミングアレイ</u>

- ・宇宙ひも重力波サーチ (Yonemaru, Kuroyanagi, KT+, 2021)
- ・サブナノヘルツ重力波検出法 (Yonemaru, Kumamoto, Hisano, KT+, 2016, 2018, 2019, 2019)
- ・楕円軌道SMBH連星重力波への制限 (Kikunaga, KT+, submitted)
- ・円偏波重力波サーチ (Kato+, 2016)
- ・アクシオンサーチ (Kato+, 2020)
- ・J1713+0474パルス形状変化 (Singha, Hisano, Kato, Kikunaga, KT+, submitted)
- ・LMCでのパルサーサーチ (Hisano, KT, in prep)

サブナノヘルツ重力波への制限 Hisano, Kumamoto, KT+, 2019

宇宙ひもパラメータへの制限 Yonemaru, Kuroyanagi, KT+, 2021

日本の研究:パルサータイミングアレイ

- PPTA 波サーチ (Yonemaru, Kuroyanagi, KT+, 2021) ・宇宙て
- ベルツ重力波検出法
- (Yonemaru, Kumamoto, Hinay), KT+, 2016, 2018, 2019, 2019) ・楕円軌道SMBH NO^{Grav}, KT+, 2016, 2018, 2019, 2019) 成への制限(Kikunaga, KT+, submitted)
- ・円偏波重力 (Kato+, 2016)
- F (Kato+, 20 NANOGrav ・アクシオンサ
- J1713+047 (INPTA)形状 3 (Singha, Hisano, ato, Kikunaga, KT+, submitted)
- ・LMCでのパルサーサーチ(Hisano, Kograv

サブナノヘルツ重力波への制限 Hisano, Kumamoto, KT+, 2019 1x10⁻¹⁸ 8x10⁻¹⁹

6x10⁻¹⁹ 4x10⁻¹⁹ 2x10⁻¹⁹ 0 -2x10⁻¹⁹

-4x10⁻¹⁹

-6x10⁻¹⁹ -8x10⁻¹⁹

-1x10⁻¹⁸

宇宙ひもパラメータへの制限 Yonemaru, Kuroyanagi, KT+, 2021

重力波検出から重力波天文学へ
~検出するだけで満足するな!~

が可能な重力波天文学を構築する。 (220文字)