

SKA時代の21cm観測による AGN光度関数への制限

Kai T. Kono, Taichi Takeuchi, Hiroyuki Tashiro, Kiyotomo Ichiki and Tsutomu T. Takeuchi

Constraining the luminosity function of active galactic nuclei through the reionization observations in the SKA era arXiv:2104.05212

Introduction

Diorgovski et al.

SMBH growth (Seeds→SMBH)

The growth history of SMBH can be constrained from AGN observation at high redshift.

✓ IGM ionization property

 \checkmark lonizing source : emission from AGN

Can we investigate the evolution of AGN from 21cm line emission from IGM via SKA observation?

Goal

Constraints on the AGN luminosity function and its evolution throughout the reionization era with IGM ionization model.

Japan SKA Consortium Science Strategy Workshop 2021 13th July 2021

Radial profile of brightness temperature

- Broader distribution with brighter central luminosity up to 1 [arcmin]
- Signal gets brighter with larger $n_{\rm H}$, $T_{\rm gas}$ in high redshift

Japan SKA Consortium Science Strategy Workshop 2021 13th July 2021

Minimum AGN luminosity SKA

Fisher analysis

Number of galaxies in (i, j)-th bin : $N_{i,i}$ 1.

Ionization photon emissivity with fiducial models 26

2. Element of Fisher matrix : $F_{\mu\nu}$

$$F_{\mu\nu} = \sum_{i,j} \frac{1}{\sigma_{i,j}^2} \frac{\partial N_{i,j}}{\partial \theta_{\mu}} \frac{\partial N_{i,j}}{\partial \theta_{\nu}}$$
$$(\mu, \nu) = (A, \gamma_1, \gamma_2, \beta_1, \beta_2, L_*)$$

Variance-covariance matrix : C 3.

$$[C] = [F]^{-1}$$

25

13th July 2021 Japan SKA Consortium Science Strategy Workshop 2021

Emissivity of ionization photon

of bin = (20, 20)

- Model I and II are distinguishable with 1σ error with (20×20) bins.
- Since luminosity in Model III is too dim, the number of detected galaxies is order $\mathcal{O}(1)$ at $z \sim 10$.
- It

It is impossible to achieve reasonable constrains.

6/7

 Japan SKA Consortium Science Strategy Workshop 2021
 13th July 2021

Emissivity of ionization photon

- Model I and II are distinguishable with 1σ error with (20×20) bins.
 - Since luminosity in Model III is too dim, the number of detected galaxies is order $\mathcal{O}(1)$ at $z \sim 10$.
 - It is impossible to achieve reasonable constrains.

Further analysis with 10 times higher

It is still impossible.

Summary

- 21-cm signal from AGN in EoR
- Evaluation of signal detectability with SKA observation
- Constraints of AGN LF parameters and their error with Fisher analysis

Results

* AGN in high redshift ($z \ge 10$) can ionize vast IGM region ~ 10 [Mpc]

* Some of our models (I and II) predicts the capability of LF parameter constraint with SKA

* With # of bin = (20, 20), we can constraint LF in $10 \le z \le 15$ even when galaxies are dimmer in order of two than ionization photon emissivity model in Madau & Haardt (2015).

Japan SKA Consortium Science Strategy Workshop 2021 13th July 2021

